Search results for " biological networks"
showing 4 items of 4 documents
Discovering discriminative graph patterns from gene expression data
2016
We consider the problem of mining gene expression data in order to single out interesting features characterizing healthy/unhealthy samples of an input dataset. We present an approach based on a network model of the input gene expression data, where there is a labelled graph for each sample. To the best of our knowledge, this is the first attempt to build a different graph for each sample and, then, to have a database of graphs for representing a sample set. Our main goal is that of singling out interesting differences between healthy and unhealthy samples, through the extraction of "discriminative patterns" among graphs belonging to the two different sample sets. Differently from the other…
Textual data compression in computational biology: Algorithmic techniques
2012
Abstract In a recent review [R. Giancarlo, D. Scaturro, F. Utro, Textual data compression in computational biology: a synopsis, Bioinformatics 25 (2009) 1575–1586] the first systematic organization and presentation of the impact of textual data compression for the analysis of biological data has been given. Its main focus was on a systematic presentation of the key areas of bioinformatics and computational biology where compression has been used together with a technical presentation of how well-known notions from information theory have been adapted to successfully work on biological data. Rather surprisingly, the use of data compression is pervasive in computational biology. Starting from…
(Discriminative) Pattern Discovery on Biological Networks
2017
This work provides a review of biological networks as a model for analysis, presenting and discussing a number of illuminating analyses. Biological networks are an effective model for providing insights about biological mechanisms. Networks with different characteristics are employed for representing different scenarios. This powerful model allows analysts to perform many kinds of analyses which can be mined to provide interesting information about underlying biological behaviors. The text also covers techniques for discovering exceptional patterns, such as a pattern accounting for local similarities and also collaborative effects involving interactions between multiple actors (for example …
Algorithms and tools for protein-protein interaction networks clustering, with a special focus on population-based stochastic methods
2014
Abstract Motivation: Protein–protein interaction (PPI) networks are powerful models to represent the pairwise protein interactions of the organisms. Clustering PPI networks can be useful for isolating groups of interacting proteins that participate in the same biological processes or that perform together specific biological functions. Evolutionary orthologies can be inferred this way, as well as functions and properties of yet uncharacterized proteins. Results: We present an overview of the main state-of-the-art clustering methods that have been applied to PPI networks over the past decade. We distinguish five specific categories of approaches, describe and compare their main features and …